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This is a survey of the basic properties of strong mixing conditions

for sequences of random variables. The focus will be on the 9structural"

properties of these conditions, and not at all on limit theory. For a

discussion of central limit theorems and related results under these con-

ditions, the reader is referred to Peligrad [60] or Iosifescu [50]. This

survey will be divided into eight sections as follows:

1) Measures of dependence,

2. Five strong mixing conditions'

3 Mixing conditions for two or more sequences-
44 Mixing conditions for Markov chains'

S Mixing conditions for Gaussian sequences)

6. Some other special examples.

7. The behavior of the dependence coefficients'

9. Approximation of mixing sequences by other random sequences

((F ~,L.. '~ T~'r'AL.,-
N- (

-..



.9

e

1.

2



3 .. 7 1 7 -

1. MEASURES OF DEPENDENCE

Suppose (Q,F,P) is a probability space. For any two a-fields A and BcF

define the following measures of dependence:

a(AB): = sup IP(A n B) - P(A)P(B)1, AEA, BEB. (1.1)

$(A,B): =suplP(BIA) - P(B)I, AEA, BcB, P(A)>0. (1.2)

rev (AB): = O(B,A) ("rev" stands for "reversed"). (1.3)

= sup IP(AnB) - P(A)P(B)l , AeA, BEB. (1.4)
P(A)P(B)(14p(A,8): = sup PYA)P( A

p(A,B): = supi Corr (X, Y) 1, X E L2 (A), Y E L2(8); X,Y real. (1.5)

PVB).= sup E JiP(A nB.) - P(A)P(B). (1.6)

where this latter sup is taken over all pairs of partitions {Al,..., A I and

{B,... , BJ I of Q such that A. EA for all i and B. EB for all j. In (1.4)

and in the sequel, 0/0 is interpreted to be 0. These measures of dependence

will be the basis for the mixing conditions that we shall study, starting

with Section 2. Here in Section 1 we shall just study these measures of

dependence.

The following inequalities hold:

2a(A,8) < a(A,B) < *(A,B) < iP(A,B). (1.7)

4a(A,B ) <5 p(A,B) < ip(A,B). (1.8)

p(A,B) < 20 (AB)rev (AB). (1.9)

p(A,B) - supll E(FIB) - EfI12 /11f112, fE L2(A), f real. (1.10)

a(A,B) s k, O(A,8) < 1, *(A,B) 5 1, p(A,B) ! 1. (1.11)

Eqn. (1.9), an improvement of the earlier well known inequality

p(A,B) ! 2 (A,B), comes from Peligrad [59, p. 462, eqn. (4)]; independently

the kindred inequality p(A,8) 5 2.max{$(A,B), re(A,B)} was given by Denker
rev

and Keller (34, p. 516, line -8]. In this last inequality as well as in
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(1.7), (1.8), and (1.9), equality is achieved in some simple cases such as

when A = 8= {R,A,AC,0} where P(A) = Eqns. (1.7), (1.8), (1.10), and

(1.11) are all either trivial or at least fairly easy to prove. Referring

to eqn. (1.11), ip(A,B) can of course take on the value +-. Each of the

measures of dependence in eqns. (1.1)-(1.6) takes the value 0 precisely ,

when A and B are independent a-fields.

The measures of dependence in eqns. (1.1)-(1.6) fit nicely into a more

general framework using "norms" of the bilinear form "covariance". For

any a-field A, let S(A) denote the set of all complex-valued simple A-

measurable random variables. (The particularly nice form of eqn. (1.13)

below depencls on the use of complex-valued rather than just real-valued

random variables; however, this is not of any special importance.) Define

the following families of measures of dependence between pairs of a-fields

A and 8:

For 0 r, s < 1,
4'.

a (A,B): = sup ,P(AnB) P(A)P(B)1 AEA, BEB.
r,s [P(A) ]r [p(B)] s

For 1 < p,q<,

R (A,B): = sup EXY - EXE XS(A) YS(B).

(Note that ar(-,.) is a variant of R using only indicator

r, s h/r )usn ol idcao
.U functions.) Obviously the measures of dependence in eqns. (1.1)-(l.S) are

respectively a0 0 (A,8), al,0 (A,B) , a0 1 (A,B) , a1 ,(A,B), and R2 2 (A,B).

(The equation p(A,B) = R2 2 (A,B) holds by (75, Theorem 1.1] and a simple

calculation.) Also it is easy to show that if one modifies the definition

. . . . . . . . ..- . r -
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of R. .(A,B) in an appropriate way so as to allow the r.v. 's X and Y to

take their values in the Banach spaces t and/ respectively, then one

obtains a measure of dependence that is within a positive constant factor

of B(A,B) in eqn. (1.6) (see [22, Section 2.2]).

If O-<ro, r1, SOP Sl:l, 0<0<1, r: = (l-O)r0 + Orl, and

s: = (1-O)s + Osl, then for any two a-fields A and B,

100
1r,s (AB) < [a rots(A,B)]l -O - [ rl s (A,B)]O, (1.12)

R (A,B) < [R (A,B)J -[R (A,B)] (1.13)1/r,1/s Ll/roil/s [RIr~is

Eqn. (1.12) has a trivial one-line proof and is useful for comparing the

various measures of dependence a (see [21, Theorems 3.1, 3.2, andr,s

4.1 (i)(ii)]). Eqn. (1.13) is an application of Thorin's multilinear version

of the Riesz-Thorin interpolation theorem (see e.g. [5, p. 18, Exercise 13]);

eqn. (1.13) and variants of it are useful for comparing various measures of

dependence and for studying the relations between them (see [67, Chapter 7]

[56, Lemma 1] [21] [22]). For example, as a consequence of (1.13) one can

show that if I 5p,q,t < and I/p + 1/q + l/t = 1, then for any two a-fields

A and B,

q(A,B) <( )•[( ,)]/ -[O(A,B}]I/P. [0re( A ,B ) ]I /q

~ (se [1Thoelli)) Exetfracntnforehsnqult
(see [21, Theorem 1.1(i)]). Except for a constant factor, this inequality

covers some other previously known ones as special cases, including eqn.

(1.9). In an obvious way, a "small" upper bound on R (A,B) might lead to
p,q

a "small" value of Cov(X,Y) if, say, X and Y are r.v.'s which are A-measura-

ble and B-measurable respectively. Such bounds are often useful in the

proofs of limit theorems for dependent random variables.
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Further information about measures of dependence can be gained from

the use of other methods and results in interpolation theory, such as the

techniques in the Marcinkiewicz interpolation theorem and the Stein-Weiss

[72] methods for handling indicator functions. That observation is due to

IW. Bryc. For example, using such techniques Bryc proved that if

I <p,q<- and 1/p + 1/q = 1, then for any two a-fields A and B,

R (A, ) !5 C- al(A,B) A, -• [1 - log ap (A,B) ]  (1.14)

where C is a positive constant that depends only on p and q (see [21,

Theorem 4.1(vi)]). (For the case p = q = 2, (1.14) improved a similar but

S.. much weaker inequality established in [15] by different methods; see also

[24].) For any choice of p and q meeting the given specifications, (1.14)

is within a constant factor of being sharp (see [22, Section 1.1]).

Let us say that two measures of dependence are "equivalent" if each

one becomes arbitrarily small as the other one becomes sufficiently small.

Among the measures of dependence a rs, 0<r,s!l, and Rpq l p,q<co,

there are only five equivalence classes which consist of more than one

member:

(i) r,s' r + s < 1, Rpq 1/p + 1/q < 1;

(ii) a t rlr, 0 < r < 1, R 1 < p < (where p' is defined by

1/p + /p' = 1);

* . (iii) alO , Rl,

... (iv) a0 ,  R ,i

(v) at, R1, (which are equal by a simple argument).

U



These five classes each contain one of the measures of dependence in eqns.

(1.1)-(1.5). The measure 8 in (1.6) is not equivalent to any of the mea-

sures ar,s or R . All of this is explained in [21, Remark 4.1] and

[22, Sections 1.2 and 2.2].

Ato

,C.

p

A.-.*%A
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2. FIVE STRONG MIXING CONDITIONS

Henceforth all random variables are real-valued. For any family

(Y s ,ES) of random variables (where S is an index set), the notation

o(Y s , s ES) will mean the a-field generated by this family, i.e. the

smallest a-field containing the events {Y <r}, S ES, rc 1R.

Suppose (Xk, k EZ) is a sequence of random variables. (No assumption

of stationarity is made yet.) For -w-J-L_ define F L :  (Xk, Jk_<L).

Referring to eqns. (1.1)-(1.6), for each n=l,2,3,... define

ct(n): = sup cff , Fj+n),
:= supjEc(F_, 00 )+n,

(F J,
0() SUPJ.E z(F J

ip(n):= supj p (F F ),

-J0Z J~np(n) : = sup JEZp(FJ 0, F J +n ) ,

(n) : =sup jBF, F 00)
JEZ J+n

The sequence (Xk) is said to be

strongly mixing [66] if limn c(n) = 0,

0-mixing [46] if limn_((n) = 0,

ip-mixing ([8] essentially) if limnw ip(n) = 0,

p-mixing [52] i limn_ Op(n) = 0,

absolutely regular [73] if lim n_ o(n) = 0.

These are the five conditions on which we shall focus. The ?-mixing condition

actually evolved from the "*-mixing" condition, which wi- the condition studied

in [18]: lim sup ip(F_-, n = 0. The maximal correlation coefficient

p(A,B) was studied in [44] [39], much earlier than the p-mixing condition.

The absolute regularity condition was attributed in [73] to Kolmogorov.

Several minor comments are in order:

• . - %
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(i) In defining the strong mixing condition (at(n) -0O) for a "singly-

infinite" sequence (k =1,2,3....) one modifies the definition of a(n)

Y--k

j -0.

as follows: a(n): = supj,.la(F1, F )j

(ii) In defining the strong mixing condition for a strictly stationary

doubly-infinite sequence (Xk, k EZ) one can simply define a(n) by

0 Go
a I(F 00, Fn )n

(iii) In whatever context one is dealing with, the sequence of numbers

a(l), at(2), a(3),... is obviously automatically non-increasing.

(iv) If a given random sequence (Xk, k EZ) is strongly mixing, and for

each k E , fk: ]R-IR is a Borel-measurable function, then the random sequence

(fk(Xk), k 5Z) is also obviously strongly mixing, with the dependence coef-

ficients a(n), n=1,2,... for the sequence (fk(Xk)) being no greater than

the corresponding ones for (Xk).

(v) If a strictty stationary strongly mixing singly-infinite sequence

(X1 , X2 , X3 ,...) is extended to a strictly stationary doubly-infinite

sequence (Xk, k EZ), then this new doubly-infinite sequence is also strongly

mixing, with precisely the same dependence coefficients ct(n), n=1,2,....

(vi) Comments (i)-(v) carry over verbatim to the other mixing conditions

defined above ( -mixing, ip-mixing, p-mixing, and absolute regularity) and

their dependence coefficients.

By eqns. (1.7), (1.8), (1.9), and (1.11) the following implications hold

for a given random sequence:
I

(i) p-mixing --> strong mixing.

(ii) absolute regularity =a strong mixing.

(iii) p-mixing => p-mixing and absolute regularity.

(iv) 4i-mixing = q-mixing.

. : ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ .................. ...... ...-... ................ .......... .: ,-.....:...-..,-:-
7..""•'. "/-,
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Among these five mixing conditions there are (aside from transitivity) no

other general implications. (For special families of random sequences,

however, e.g. Gaussian sequences, discrete Markov chains, etc., there are

other implications; this will be seen in more detail in Sections 4 and 5

later on.) Since "strong mixing" is the weakest of these five conditions,

these conditions - - and others that imply strong mixing.-- are sometimes

referred to collectively as "strong mixing conditions" (plural). The term

"strong mixing condition" (singular) will refer to the condition ct(n) +0

as above. Of course all of these mixing conditions are satisfied by se-

quences of independent r. v. 's and also by in-dependent sequences. Other

examples will be encountered in Sections 4, 5, 6, and 7 later on. Later in

Section 2 here the strong mixing condition will be compared to standard

conditions in ergodic theory.

For a given sequence (X , dsZ) the *-mixing condition is not neces-

sarily preserved if the direction of "time" is reversed. Referring to eqn.

(1.3), define for each n =,2,3,..., re(n) t F n) ,

"se conditions In [51, p. 414] there is an example of a strictly

stationary countable-state Markov chain (X ks k EZ) such that 0(n) +0 as

n-e and to(n) = 1 for all nt1. "Symmetric" versions of the e-mixing
rev

condition, putting equal emphasis on 0(n) and *re v (n), have been useful in

limit theory (see [34] [59]).

In the rest of Section 2, and also in most of thest of this paper,

we shall deal only with a strictly stationary doubly-infinite sequence

(X k EZ) .

For measure-theoretic convenience, for the rest of Section 2 we shall

assume that our probability space is ciR (,P). (In a context such as

nr .

? t pt %



9

this, the symbol 8 is intended to mean the standard Borel 0-field.) We

shall of course assume that for each w IR and each k E Z, Xk(w): = Wk.

th
(The notation w means the k coordinate of w.) We shall use a regular

conditional distribution of (Xl, X2, X3,...) given (XO, X 1, X 2 ,...).

In this context a standard measure-theoretic argument will show that,

under our assumption that (Xk) is strictly stationary, for each n2>1,

0
0(n) = ess sup[suplP(BlFO_ ) - P(B)I, B F],

and

(n) - E[suplP(BIF_) - P(B) , BeF].

There is another useful formulation of 0(n). Let Q denote the probability

measure on (JR B_) such that (i) under Q the a-fields F0 and F are inde-

0 0,
pendent and (ii) on each of these two a-fields F_. and F1 the measure Q is

identical to P. Then (under our assumption of strict stationarity),

8(n) = supIP(D) - Q(D)I, D e F.-. VF
(2.1) -

= YiPn -QnI

where P (resp. Qn) is the restriction of P (resp. Q) to F 0 VF and Ij"11n -00 n ,:

denotes total variation.

Let T denote the usual shift operator on I; that is, for each w ,

Tw is defined by (Tw)k: = Wk+l for all keZ. For any event A - ( = 8Z )

1
we use the notation TA: = {w: T W EA). Our (strictly stationary) sequence

(Xk) is said to be "mixing", or "mixing in the ergodic-theoretic sense", if

for all A,B F_, lim nP(AnT B) = P(A).P(B). (In ergodic theory this

condition is sometimes referred to as "strong mixing", but we shall use the

term "strong mixing" for the condition a(n) +0 as before.) Our sequence

(XkJ is said to be "regular" if its past tail a-field n F is trivial

. ~ ........... . . . . . ...

-- .. .. -. -. .'*.* *...."-.
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(i.e. contains only events of probability 0 or 1). It is well known that

(i) mixing (in the ergodic-theoretic sense) ergodic,

(ii) regular * mixing (in the ergodic-theoretic sense), and

(iii) strong mixing (a(n) 10) = regular.

Statements (ii) and (iii) are easy consequences of [47, p. 302, Theorem

17.1.1]. Naturally, in (ii) and (iii) one can replace "regular" by the

condition that the future tail a-field n F be trivial. (In Example 6.2
n~l n

in Section 6 we shall encounter a well known stationary regular sequence

whose future tail a-field fails to be trivial.)
a,

If (Xk) is strictly stationary and absolutely regular, then its double

tail a-field n (F-n v ) is trivial (i.e. P(D) = 0 or 1 for every D in

the double tail a-field). This holds by (2.1) and an elementary measure-

theoretic argument (one can use e.g. [74, Lemma 4.3]). In [19] a strictly

stationary p-mixing sequence is constructed for which the double tail

a-field fails to be trivial.

Let us briefly give references for several other related mixing con-

ditions, for strictly stationary sequences. The "information regularity"

condition (see [65]) is like the strong mixing conditions defined above,

using the "coefficient of information" as the basic measure of dependence.

A "Cesaro" variant of strong mixing, known as "uniform ergodicity", was

studied by Cogburn [25]; and Rosenblatt [68, Theorem 2] established a

nice connection between this condition and the strong mixing condition

itself. Another mixing condition weaker than strong mixing has played a

nice role in extreme value theory (see e.g. [54]) as well as in convergence

in distribution to non-normal stable laws (see [29]). A mixing condition

based on characteristic functions was studied in [75]. Finally, by a

theorem of Ornstein, a condition of weak dependence known as the "very

[ :.''.- . .-.-'- .-''N'" -,-'3,, -.,'-,. '-,- - . ,• -,-.-...- -*:.,-:'-: .:"-:-'; ' :- ''; :

I "'4 ' ,,'-7 - -. -'" '
. ' ' - ' .

: -' '' ''-:': :' '''"'' : '-- . ' .'' - ' . ' ''



weak Bernoulli" condition characterizes the strictly stationary finite-state

sequences that are isomorphic to a Bernoulli shift. For more information on

* the very weak Bernoulli condition, including recent generalizations of it to

stationary real sequences in connection with central limit theory, see [71]

[36] [32] [17] and the references therein.
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3. MIXING CONDITIONS FOR TWO OR MORE SEQUENCES

L
Suppose (Xk, k EZ) and (Yk' k EZ) are strongly mixing sequences that

are independent of each other. Then the sequence of random vectors

((Xk,Yk), k EZ) is strongly mixing. Hence the sequence of sums (Xk +Ykv k cZ)

is also strongly mixing. The same comments apply to the other mixing condi-

tions being discussed here. Pinsker 165, p. 73] noted this for absolute

regularity. Under natural extra restrictions, such comments can be extended

from two to countably many sequences that are independent of each other.

Here we shall just present the basic propositions from which all of these

comments can easily be deduced.

The first result is due to Csaki and Fischer [27, p. 40, Theorem 6.2]:

Theorem 3.1 (Csaki and Fischer): Suppose A and 8n n = 1,2,3,... are a-fields

and the a-fields (A vBn), n = 1,2,3,... are independent. Then
n n

P( v A, v B)= sup lp(AnB n )
n=l n n=l n n> nn

For a short proof see Witsenhausen [76, Theorem 1]. In Example 4.4 in the

next section an interesting application of Theorem 3.1 will be given. For

the other dependence coefficients, slightly weaker statements hold:

Theorem 3.2: If the hypothesis of Theorem 3.1 is satisfied, then the

following statements hold:
ooo

n=l n nl

- ii)8(v An  V 8 O(AnBn)
n n n n

n=l n n-

.....
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n=1 n--1 n=1

n=1 n n=1 n=l

Statements (i)-(iii) can be found in [12, Lemma 8] , [20, Lemma 2.2], and

[11, Lemma 2.2]. Statements (ii)-(iii) can also be derived easily from

- [37, Lemma 1]. Statement (iv) is an elementary consequence of [14, Lemma 1).

p.

s
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4. MIXING CONDITIONS FOR MARKOV CHAINS

Here a brief discussion is given of Markov chains satisfying strong

mixing conditions. For a more thorough discussion of this topic see Rosen-

blatt [67, Chapter 7].

The following theorem is fundamental to the study of mixing conditions

on Markov chains:

Theorem 4.1. Suppose (Xk, k EZ) is a strictly stationary real Markov chain.

Then for all n-1 the following five statements hold:

(i) ac(n) = aC((X 0 ), OC(X)).

(ii) p(n) = p(CY(X 0 ), aCXn)).
0 n

(iii) B(n) : 8(O(), O(X)).
0 n

(iv) *(n) = *(Y(X 0), O(Xn)).

(v) ,(n) = p(a (Xo), a(X)).
0 n

The proof is an elementary measure-theoretic exercise using the Markov property.

For example, see [8, Lemma 8] for a proof of (v). (Thus for Markov chains,

lp -mixing is equivalent to the "*-mixing" condition studied in [8]). As a

consequence of (iv), for Markov chains the 0-mixing condition is equivalent

to Doeblin's condition (see [67, p. 212, eqn. (18)]).

For the next theorem we shall use the following terminology: A sequence

of non-negative numbers al, a2, a3 ,... is said to "converge to 0 exponentially

-infast" if there exists a positive number r such that a = O(e- ) as n - o.
n

Theorem 4.2. Suppose (Xk, k eZ) is a strictly stationary real Markov chain.

Then the following three statements hold:

.-" , ,1--

• w , -- w.,,mm,.-,m- a ~ m -md lmlmmhlkl~ll~u~ll - -I°
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(i) If p(n) +0, then p(n)-1+0 exponentially fast.

(ii) If 4(n)40, then p(n)4)0 exponentially fast.

(iii) If 4i(n) 40, then ip(n) +0 exponentially fast.

Part (iii) was proved in [8, pp. 8-9, Theorem 5]. The arguments for parts

(i) and (ii) are similar. (For part (i) a simple argument using (1.10)

and the Markov property will show the well known inequality p(m +n) sp(m).p(n)

for all positive integers m and n. For part (ii) see e.g. [67, p. 209, Lemma

3].) Theorem 4.2 does not extend to either a(n) or 8(n). As a consequence

of the classic convergence theorem for transition probabilities, any strictly

stationary countable-state irreducible aperiodic Markov chain is absolutely

regular. Such Markov chains exist for which the rate of convergence of a(n)

(and hence also the rate for 8(n)) to 0 is slower than exponential (see e.g.

[30, Examples I and 2] or [51, p. 414, Corollary 1]). (By Theorem 4.2 such

Markov chains cannot be p-mixing.) Of course every stationary finite-state

irreducible aperiodic Markov chain is ip-mixing (with exponential mixing rate).

A strictly stationary real Markov chain (Xk) is said to be a "Harris

chain" if it has the Harris recurrence property: There exists a regular ver-

sion of the conditional distribution of (X1, X2, X3,...) given X such that

0
for every x E 1R, for every Borel subset B c R such that P(X 0 £ B) >0, one has..

that P(X e B for infinitely many positive integers nix 0 = x) =1. (Thus every

stationary countable-state irreducible Markov chain is a stationary Harris

chain. Also, non- stationary Harris chains will not be discussed here.)

It is well known that every stationary Harris chain has a well defined "period"

p E {1,2,3,... (the chain is said to be "aperiodic" if p =1). This fact and

the next theorem can be seen (with a little work) from Orey 157, p. 13,

Theorem 3.1; p. 23, Theorem 5.1; and p. 25, lines 9-13].

.P.. ,.. "--.-.'. .. ; ' _ '.. ..".-..' - .. 2 .)-.. --- -. ."--.'. . " , ' i., >.- -, ':

-" " ."" "- - " '. '"" " "" " -". " ". ". '- "- ... -V . ', . , , '-7 .
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Theorem 4.3. (i) Every strictly stationary real aperiodic Harris chain is

absolutely regular. (ii) More generally, for any strictly stationary real

Harris chain, lim n (o in) = 1 - 1/p where p is the period.

A sequence (Xk) is said to be an "instantaneous function" of a real

Markov chain (Yk) if there is a Borel-measurable function f: R -,-R such

that for each k EZ , Xk = f(Yk) . As a consequence of Theorem 4.3(i), any

instantaneous function of a stationary real aperiodic Harris chain is a

stationary absolutely regular sequence. In [4] there are some stationary ¢-

mixing sequences which cannot be represented (on any probability space) as

an instantaneous function of a stationary real Harris chain (periodic or

aperiodic). It is apparently unknown whether any such sequences exist which

are ip-mixing or even 1-dependent.

Example 4.4. Rosenblatt [67, p. 214, line -3 to p. 215, line 13] presents a

class of stationary real Markov chains which are P-mixing but not absolutely

regular. (Consequently, they are not Harris chains.) His construction is

based on "random rotations". Here we shall construct one of those examples

in a different way, as an application of Theorem 3.1.

As a preliminary step, consider a stationary Markov chain (Wk, k -E)

with two states {0,11, with invariant probability vector ( , ), and with

one-step transition probability matrix (pij) given by P3 = Pll = 3 /4

Plo=P 01 = . By an induction argument, for each n-l the n-step transition
probability matrix (p(n) is given by p ) (n) -n

00 1

Pl0 = np  = (1 - 2 n)/2 . A simple argument will show that for each n> l,

10 0

, . . . . . . . . . . . . . . . . . . . . . . . . .
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(Wk) satisfies p(n) p((w 0 , (W) Corr(W0 ,W )I = 2 -n . Here the first

inequality comes from Theorem 4.1 and the second from the elementary fact L.

that every function of a two-state r.v. is automatically an affine function.

Now let (Wk k EZ), j =1,2,3,... be independent Markov chains, each

having the same distribution as the Markov chain (Wk, kE Z) above. Define

the sequence (Xk, kE Z) by Xk: = j Up to null sets, for each k,

o(Xk) = (W j =1,2,...) (i.e. from X one can calculate the value ofk k'j k

) j =1,2,3,... a.s.). It follows that the sequence (Xk) is a Markov

chain, and it is easy to see that it is strictly stationary. Further, (Xk)

satisfies p(n) = 2-nfor all n al, by Theorem 3.1 and the properties of (Wk)

above; and hence (Xk) is p-mixing. In the framework of eqn. (2.1) one has

that for each n->l, by a simple calculation and the strong law of large

numbers, P(lim Z ) = ( )( 1 +2 -n)) = 1 and
P"J--j=1 0 n

Q(Iim t oE=I) = = 1, and hence P and Q are mutually singular on

O(Xo,X). Hence (Xk) satisfies (n) = 1 for all n >l, i.e. (Xk) fails to

be absolutely regular. This completes Example 4.4.

% .%
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4°.

5. MIXING CONDITIONS FOR GAUSSIAN SEQUENCES

For stationary real Gaussian sequences, a thorough discussion of the

various mixing conditions is given by Ibragimov and Rozanov [48] [49,

Chapters 4-5]. Theorem 5.1 here essentially just lists a few basic results

from that discussion.

Theorem 5.1: Suppose (Xk, kEZ) is a (non-degenerate) stationary real

Gaussian sequence. Then the following four statements hold:

(1) The following two conditions are equivalent:

(a) (Xk) is regular.

(b) (Xk) has an absolutely continuous spectral distribution function, and

its spectral density f (defined on [-rrjl) satisfies flogf(X)dX >

(2) The following three conditions are equivalent:

(a) (Xk) is strongly mixing.

(b) (Xk) is p-mixing.

(c) The spectral density f of (Xk) can be expressed in the form

f(X) = IP(e i x ) 12 exp[u(ei X) + v(eiX)] where P is a polynomial, u and v are

continuous real functions on the unit circle (in the complex plane), and v

is the conjugate function of v.

(3) The following two conditions are equivalent:

(a) (Xk) is absolutely regular.

(b) The spectral density f of (Xk) can be expressed in the form

f(X) = [P(ei) 2exp[Ec oa eiLPI (the sum converging in L2 [-r,rr]) where P

is a polynomial whose roots (if there are any) lie on the unit circle and

= 12 <


